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Abstract Separation of the sexes is necessary for the application of the sterile insect technique (SIT) in mosqui-

toes due to the hematophagous habits and disease vector activity of the females. In this review we

analyze the history, current status, and future perspectives for the development of genetic sexing

strains (GSS) ofAedesmosquitoes (Diptera: Culicidae). Various genetic controlmethods formosqui-

toes are reviewed, as are their need for sex-separation methods. We focus on areas of opportunity

where GSS developed with classical genetic methods can be used. Regulatory restrictions and social

acceptance of various control methods are analyzed. We conclude that the development of GSS by

classical methods represents the most viable option for separation of the sexes and the application of

large-scale SIT programs within an area-wide integrated vectormanagement (AW-IVM) approach.

Introduction

Mosquitoes of the genera Culex, Anopheles, and Aedes (Dip-

tera: Culicidae) are well known as vectors of diseases affecting

humans and other vertebrates. Certain mosquitoes transmit

pathogens and arboviruses causing diseases in humans that

are considered global public health problems (Onchuru

et al., 2016). These vectors are established in urban, subur-

ban, and rural environments. Their broad geographic distri-

bution and the ecological niches they occupy make them a

serious threat to human health (Tandina et al., 2018).

Aedes aegypti (L.) and Aedes albopictus (Skuse) are the

most prominent species within the Aedes genus in terms of

public health threats. Aedes aegypti is the main vector of

the viruses that cause dengue and yellow fever (Failloux

et al., 2002), and recently chikungunya and Zika (Fern�an-

dez-Salas et al., 2015; Shragai et al., 2017). Aedes albopictus

is considered another important vector species of these

viruses, especially in peri-urban and rural areas (Reiter

et al., 2006; Delatte et al., 2008; Paupy et al., 2010). The

vector role of both species is reflected in the recent out-

breaks of Zika in 2015 and 2016, during which regions of

Latin America and the Caribbean were severely affected by

the presence and coexistence of these vectors in peri-urban

spaces (Capurro, 2018).

Despite advances in the development of vaccines against

certain arboviruses – such as dengue, Japanese encephali-

tis, tick-borne encephalitis, and chikungunya (Monath,

2013) – there are still no effective vaccines against these

diseases. The cornerstone of public health efforts remains

the efficient control of vector insects in order to avoid the

emergence and reduce the spread of arboviruses

(Arredondo-Garc�ıa et al., 2016).

To avoid the emergence and reemergence of vector-

borne diseases, interest has focused on the search for alter-

native strategies to the current conventional control and

suppression methods. Additional methods such as the

sterile insect technique (SIT), the incompatible insect tech-

nique (IIT), and transgenic approaches have become
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consolidated and are increasingly effective (Alphey et al.,

2010; Yamada et al., 2012; Zacar�es et al., 2018). Based on

successes achieved with various pest species, the SIT, also

known as autocidal control, is a widely accepted strategy as

part of an area-wide integrated pest management (AW-

IPM) approach, as it has no adverse effects on the environ-

ment and is specific to the target pest (Dyck et al., 2021).

The technique is based on the principle of reduction of

reproductive potential and involves the production and

systematic release of millions of sterile male insects that

compete with wild males to mate with wild females, caus-

ing a population decline over time (Knipling et al., 1968).

Application of the SIT to suppress mosquito vectors

requires an effective method for separation of the sexes in

order to eliminate the females and release only males.

Given that females are blood-sucking and can therefore

transmit diseases, it is necessary to have a method that

ensures a high level of recovery of males with little or no

contamination by females (Mains et al., 2016). In small-

scale rearing processes, this requirement has been moder-

ately achieved by mechanical separation methods through

systems of glass plates or sieves designed to separate males

and females according to sexual size dimorphism in the

pupal stage (Fay & Morlan, 1959). However, it is desirable

to develop methods of separation of the sexes that are

applicable under large-scale massive rearing conditions,

which would facilitate the separation process and avoid

the release of females. The acceptable level of female con-

tamination will be almost null when dealing with disease

vectors, whereas when dealing with mosquitoes as a nui-

sance because of their biting, a higher female contamina-

tion could be acceptable.

In this context, our aim here is to review the state of the

art in the development of sex-separation methods for SIT

application inAedesmosquitoes and analyze future perspec-

tives. First, we briefly describe current genetic control meth-

ods for mosquitoes, with an emphasis on the SIT. Then we

review the history, principles, and practicability for imple-

mentation of available sex-sorting systems. We pay special

attention to the advances made in the development of

genetic sexing strains (GSSs), considering the approaches of

classical andmolecular genetics. Finally, we discuss the regu-

latory restrictions and social acceptance of these technolo-

gies, their strengths and limitations, and future perspectives.

Control methods

Methods used for mosquito control can be divided into

four categories: (1) environmental management or sanita-

tion (CDC, 2010), (2) chemical control (WHO, 2003; Bal-

dacchino et al., 2015), (3) biological control (WHO/

EMRO, 2003), and (4) genetic control (Wilke et al., 2009).

Genetic control has been defined as "the use of any condi-

tion or treatment that can reduce the reproductive poten-

tial of noxious forms by altering or replacing the

hereditary material" (WHO, 1964). These genetic control

methods follow two approaches: population suppression –
reducing the total population (infected / uninfected) and

thus, the probability of human-vector contact – and popu-
lation replacement – substituting the population that can

transmit a pathogen (susceptible strain) with individuals

that cannot transfer the pathogen (refractory strain) (Cur-

tis & Graves, 1988). For these approaches to be successful,

it is necessary that the population of infected vectors be

below a given threshold, so that the probability of trans-

mission decreases (Terenius et al., 2008).

The sterile insect technique (SIT), the incompatible

insect technique (IIT), and some transgenic approaches

achieve suppression of vector insect populations. These

control methods require the release of only males, with the

aim of reducing population growth and avoiding the

release of hematophagous females (Bourtzis & Tu, 2018).

SIT: recent advances for genetic control of Aedes
mosquitoes

After the first successful case of the SIT used against the

screw worm Cochiomyia homnivorax (Coquerel) in 1954,

application of the SIT has been extended to other pests of

agricultural or public health interest (Dyck et al., 2021),

such as mosquito vectors of diseases. Early attempts to

establish programs of release of sterile mosquitos have

taken place since the 1950s with the genera Culex (Laven,

1967, 1971; Laven & Aslamkhan, 1970; Patterson et al.,

1970; Grover et al., 1976; Curtis et al., 1982), Anopheles

(Weidhaas et al., 1962, 1974; Davidson et al., 1970; Lofgren

et al., 1974; Bailey et al., 1980), and Aedes (McDonald

et al., 1977; Petersen et al., 1977).

Given a lack of knowledge regarding the biology and

ecology of the vectors and the absence of a sexing system,

most of these experiments presented technical faults that

impeded the success of the release programs (Benedict &

Robinson, 2003). However, other early attempts did

demonstrate efficacy in terms of suppressing vector popu-

lations (Laven, 1967; Breeland et al., 1974; Breeland, 1974;

Lofgren et al., 1974;Weidhaas et al., 1974).

Since the beginning of the first SIT attempts, innumer-

able studies have focused on the fulfilment of the require-

ments and the improvement of the methods and

techniques for its successful application (Klassen et al.,

2021). Past experiences marked the standard for the plan-

ning and design of future programs targeted at mosquito

vectors. A technological package was also developed for

the processes of mass rearing, sterilization, release, and
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quality control of sterile Ae. aegypti and Ae. albopictus

(WHO/IAEA, 2020). This technological package describes

the procedures applied in the Insect Pest Control Labora-

tory (IPCL, Seibersdorf, Austria) of the FAO/IAEA. The

package includes guidelines for colonization and colony

management, mass rearing, sterilization, and mark-

release-recapture for estimation of populations. Comple-

mentary to this, new guidelines addressing transport and

quality control, are being prepared. These guidelines are

available online at: http://www-naweb.iaea.org/nafa/ipc/

public/manuals-ipc.html.

To address the interest of UN member states, the

WHO/TDR and the FAO/IAEA jointly published the

‘Guidance Framework for Testing the Sterile Insect Tech-

nique as a Vector Control Tool against Aedes-Borne Dis-

eases’ (WHO/IAEA, 2020). Currently, pilot tests are being

developed addressing the use of the SIT in Brazil, Cuba,

Malaysia, Mexico, and USA for the management or sup-

pression ofAe. aegypti, and in Thailand, Singapore, France,

Germany, Greece, Italy, Mauritius, and Spain against

Ae. albopictus (WHO/IAEA, 2020).

Incompatible insect technique (IIT)

The IIT is based on SIT but focuses on the suppression of

populations through genetic mechanisms that induce

sterility, such as cytoplasmic incompatibility (CI) (Kni-

pling et al., 1968; Lees et al., 2015). Cytoplasmic incompat-

ibility is caused byWolbachia, a Gram-negative bacterium

of the class a-Proteobacteria of the order Rickettsiales that
mainly inhabits the somatic and reproductive tissues of its

host (Werren et al., 1995; Dobson et al., 1999). Transmis-

sion is maternal and its presence causes different repro-

ductive alterations, such as parthenogenesis in species of

the orderHymenoptera (Stouthamer et al., 1993) and fem-

inization in isopods (Crustacea) (Rigaud et al., 1991;

Rousset et al., 1992; Juchault et al., 1994). It is an andro-

cide (male-killing) in species of Coleoptera (Hurst et al.,

1999; Fialho & Stevens, 2000), Lepidoptera (Jiggins et al.,

2000), Diptera (Hurst et al., 2000), and Dromopoda

(pseudoscorpions) (Zeh et al., 2005). Wolbachia infection

results in CI (Hoffmann & Turelli, 1997) in arthropods

(Wade & Steven, 1985; Breeuwer et al., 1992; O’Neill et al.,

1992; Bourtzis & O’Neill, 1998). Cytoplasmic incompati-

bility is manifested by embryo mortality, which occurs

when Wolbachia-infected males mate with non-infected

females (unidirectional incompatibility) or with females

that carry a strain of Wolbachia that is incompatible with

that of the males (bidirectional incompatibility) (Ara�ujo

et al., 2015;Mateos et al., 2020).

Three approaches have been developed with regard to

the introduction of Wolbachia in populations of vector

mosquitoes. One approach has been the manipulation of

survival of the vector. Brownstein et al. (2003) suggested

that introduction of theWolbachia wMelPop strain, origi-

nating in Drosophila, to Ae. aegypti reduced the longevity

and fecundity of this mosquito. McMeniman et al. (2009)

reported that the life expectancy of females infected by

Wolbachia wMelPop-CLA strain was reduced by up to 50%,

favoring the interruption of dengue virus transmission. A sec-

ond approach has been the protection against pathogens

based on antiviral effects. Moreira et al. (2009) reported that

the presence of the Wolbachia wMelPop-CLA strain, intro-

duced to Ae. aegypti, reduced the capacity for infectionwith

dengue, chikungunya, and Plasmodium sp. A third

approach has been the combination of SIT and IIT to

reduce the risk of virus transmission by females that can be

accidentally released and reduce the risk of population

replacement (Lees et al., 2015). The viability of the combi-

nation of using irradiation (40 Gy dose) and CI was evalu-

ated in pupae of Ae. polynesiensis (Marks) infected with

Wolbachia (Brelsfoard et al., 2009). The results supported

this approach as a preventative measure against the acci-

dental replacement of the target population, as neither the

biological attributes of themale insects or the CI caused by

the presence of the bacteria were adversely affected.

Recently, Zheng et al. (2019) evaluated three lines of Ae.

albopictus from Guangzhou, China. The first line carried a

triple infection caused by artificial transfection of the

native strain ofWolbachia (wPip) of Culex pipiens L. to Ae.

albopictus. After the artificial infection, crossing was con-

ducted in which the females mated with wild males that

presented natural superinfection by native strains of Wol-

bachia (wAlbA, wAlbB) to generate the line HC (wAlbA,

wAlbB, and wPip) that expressed high CI. The second line

presented a natural superinfection by native strains of

Wolbachia (wAlbA, wAlbB). The third was not infected. It

appeared that infection byWolbachia did not significantly

affect the fitness of any of the mosquito lines and the HC

strain of mosquitoes had potential for mass rearing and

subsequent application in a combined IIT-SIT strategy.

Following the generation and characterization of the HC

line, Zheng et al. (2019) tested the IIT strategy. They

released millions of incompatible HC sterile mosquitos in

the field over a 2-year period. At the end of the study,

almost 100% suppression of two wild populations of Ae.

albopictus was achieved, and the mosquito biting rates

were reduced by 88.7–96.9% in two study areas, demon-

strating that the application of the combined SIT-IIT strat-

egy was successful for the control of this vector.

Transgenic approaches

Genetic engineering has been used to produce genetically

modified or transgenic insects that can be used to suppress

populations. This approach can be classified into three
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types: (1) release of insects carrying dominant lethal genes

(RIDL), (2) RNA management, and (3) use of homing

endonuclease genes (HEG).

The mode of action in the RIDL approach is similar to

SIT. In this case, males carry transgenes in their genome,

which, after release, are transmitted to the wild females

through copulation. The female offspring will be affected

in terms of their biological attributes, such as their flight

ability, thereby limiting their ability to search for food or

mates (McGraw & O’Neill, 2013). Another approach uti-

lizes transgenes that induce mortality. These are of late

action and are expressed in the larval stage or in the early

phase of the pupae (Phuc et al., 2007).

In RIDL, the genetically modified mosquito remains in

the environment for a very short period. Currently, RIDL

is the only available strategy for genetically modified mos-

quitoes. This approach has been strengthened through the

development of guidelines for the direction of field trials

with genetically modified mosquitoes (Benedict et al.,

2008). Initially, RIDL was tested in several experiments in

field cages with mixed results and it was found that field

trials provided valuable information on the behavior of

genetically modified mosquitoes (Fachinelli et al., 2013;

Lee et al., 2013; Madakacherry et al., 2014). In the same

way, genetically modified sterile male Ae. aegypti mosqui-

toes have been field tested in regions of Malaysia (Lacroix

et al., 2012), the Cayman Islands (Harris et al., 2011,

2012), and Brazil (Malavasi, 2014).

The second strategy centers on the first stages of devel-

opment of the mosquito. Through RNAmanagement, the

RNAi technique confers immunity to the individual

through the construction of an inverted repeat of a geno-

mic RNA of the invading virus, through a protection

response that unlocks the double-stranded RNAi to avoid

development of the virus (McGraw & O’Neill, 2013). One

of the advantages of this focus is that these genetic con-

structions can be developed for other viruses of global

importance, such as the West Nile virus (Arjona et al.,

2011). Nevertheless, this approach is currently one of the

least developed.

Finally, the use of homing endonuclease genes (HEG) is

the third approach, based on cutting specific DNA

sequences of ca. 30 bp. In an organism, that is heterozy-

gous for the EG, the endonuclease cuts the intact copy of

the recognized sequence in the chromosome that does not

contain theHEG. Another function of theHEG is suppres-

sion of the population directed at the genes that alter bio-

logical processes such as fecundity, survival, and sexual

proportion (Deredec et al., 2011). To date, HEG have been

successfully introduced into species such as Ae. aegypti

(Traver et al., 2009) and Anopheles gambiae Giles (Wind-

bichler et al., 2011).

The need for a method of sexual separation: genetic sexing strains

In SIT programs, some IIT applications and some trans-

genic applications require the separation of the sexes, to

avoid the release of females. Efforts to develop sex separa-

tion methods through molecular and genetic mechanisms

have intensified. The challenges presented by SIT-based

programs lie in maintaining the males in optimum condi-

tions in order to secure adequate sexual performance in

the field, despite various handling processes including the

separation of the sexes (Crawford et al., 2020). As a result

of these efforts, sex separation has benefited from the suc-

cessful development of genetic sexing strains (GSS) for 19

pest species, but only seven of these can be mass-reared for

SIT application. Of these seven GSS, two are mosquito

species (Anopheles albimanus Wiedemann and Anopheles

arabiensis Patton), and five are tephritid fruit fly species:

Anastrepha ludens (Loew), Bactrocera curcubitae (Coquil-

let), Bactrocera dorsalis (Hendel), Bactrocera tryoni (Frog-

gatt), and Ceratitis capitata (Wiedemann) (DIR-SIT,

2020).Ceratitis capitata is considered amodel for the other

species, given its stability for use in operational programs

over prolonged periods of time (Robinson, 2002; Franz,

2005).

The FAO/IAEA joint division has implemented coordi-

nated research projects on the subject (Lees et al., 2014). In

the case of mosquito vectors, efforts to develop GSS have

been redoubled for their subsequent implementation in

programs that apply the SIT. Munhenga et al. (2016) eval-

uated the competitiveness of the GAMA strain of An. ara-

biensis under laboratory and field conditions, considering

different proportions of sterile males (GAMA strain),

fertile males (AMAL strain), and wild females (AMAL

strain). They observed that the GAMA strain of An. arabi-

ensis, at a proportion of 3:1 (3 GAMA males: 1 AMAL

male), could compete successfully in terms of mating with

wild females.

For the genus Aedes, using a combined SIT/IIT

approach in Ae. aegypti in Thailand, Kittayapong et al.

(2018) demonstrated that with the adjustable glass plates,

99% of the males were obtained for sterilization and

release in the field, with only 0.06 � 0.10% of contamina-

tion by females. Lebon et al. (2018) developed the first GSS

for Ae. albopictus. This strain, known as Tikok, was created

through a translocation that conferred resistance to dield-

rin (rdlR). These authors observed that the males have

parameters that are acceptable for implementation of the

SIT, including survival of the larvae and separation of the

males with 98% efficacy. However, it will be necessary to

conduct further studies in order to improve the percentage

of larval eclosion.

Gunathilaka et al. (2019) used one behavioral method

(double feeding with insecticide) and two mechanical
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methods (standard sieving and the Fay-Morlan glass

plates method) for sex separation in each developmen-

tal stage of Ae. aegypti and Ae. albopictus. The standard

sieving was 73 and 69% effective for Ae. aegypti and

Ae. albopictus, respectively. With the mechanical glass

separators, the efficiency values were 99% for both Ae.

aegypti and Ae. albopictus, with 16 and 12% female con-

tamination, respectively. The double feeding method

with ivermectin and spinosad resulted in 100% females

eliminated, showing the greater efficacy of this method

compared to the mechanical methods.

Recently, Crawford et al. (2020) during the program

Debug, developed technology focused on the mechaniza-

tion of the sexual separation process as one of the main

objectives of the project of suppression of Ae. aegypti in

California, USA. This process was based on a three-step

system that allowed a reduction in contamination by

females duringmass-rearing ofAe. aegypti transfected with

Wolbachia. In the first step, the mosquitos are separated

using sexual dimorphism by passing through an auto-

mated sieve, which achieved elimination of 94.9% of the

females. In the second step, during the emergence of adults

from the sieved male pupae in step one, individuals are

inspected and labeled using images with industrial image

analysis software, with around 95.6% of the males passing

to the next phase. Finally, the images obtained during the

inspection are transferred for correct identification under

the judgement of five reviewers. If any female individual is

detected, the release tube is purged. Final contamination

by females is estimated at one female individual for every

900 million males with a cytoplasmic incompatibility (CI)

of 95%. The project caused a reduction of 99% in the Ae.

aegypti population over an area of almost 300 ha (Craw-

ford et al., 2020).

These results indicate the effectiveness of the SIT and

the feasibility of the mechanized method of sex separation.

However, implementation of this technology requires an

analysis of its costs and practicality on a larger scale. The

use of mechanical and behavioral methods, or their com-

bination during different developmental stages of mosqui-

toes under the SIT/IIT approach represents an efficient

alternative for female elimination, with an acceptable yield

of males and low contamination by females. This contami-

nation by females can be as high as >10% or as low as

<0.1%, depending on factors such as the ability and skills

of the technicians and the rearing conditions (Zacar�es

et al., 2018). The current levels of contamination by

females are unacceptable (Kittayapong et al., 2018), and

these combined methods represent a viable option for

small-scale projects until other more effective methods are

developed.

Regulatory restrictions and social acceptance

New technologies for the control of mosquitoes represent

a great challenge for researchers, due to the rift that exists

in terms of establishing a balance between the scientific

and social spheres. In general, the rejection of transgenic

organisms by society is due to their possible negative

effects on human health and the environment (Skerritt,

2000). However, risk assessment is necessary in order to

determine their safety and efficacy, providing evidence

and defining the technical requirements of the regulatory

processes necessary to conduct such assessment under field

conditions.

In this context, there is a series of regulations and limi-

tations clarifying what this approach must address from

different perspectives, evaluating the negative aspects,

expected benefits, and autonomy of the project (Macer,

2005). Decision makers, organizations of joint projects,

and collaborators all face the challenge of preliminary

requirements to evaluate and anticipate ethical, social,

and cultural aspects, for which reason the project must be

structured through rigorous planning, including: (a) jus-

tification of the choice of area in which to develop the

study, which involves an initial approach in order to

establish a connection between the decision makers and

collaborators of the participating communities; (b) evalu-

ation of potential risks based on the regulations; and (c)

the development of strategies of regulatory supervision

for effective monitoring during field release tests (Lavery

et al., 2008). Considering this aspect, it is possible to

determine whether the program complies with the ethical

aspects prior to conducting a release; i.e., that the pro-

gram: (a) presents no ecological risks, (b) has the

informed consent of the community inhabitants, and (c)

does not compromise human health through the use and

release of GM insects. Before any release of GM vectors

into the field, it is important to determine the characteris-

tics of the region, as the approach with the inhabitants

represents a complicated task to tackle due to certain cul-

tural and educational limitations. Therefore, the active

participation of researchers together with the region’s

leaders represents an aid and link in the epidemiological

work of GM mosquito management (Favia, 2015). How-

ever, it is vital to establish minimum standards of risk

evaluation, as well as ethical principles, in order to deter-

mine the extent to which a program exceeds the permit-

ted limit (Reeves et al., 2012). The use of transgenic

mosquitoes can face strong opposition from public opin-

ion and from opponents who severely criticize the release

of genetically modified (GM) insect vectors in the envi-

ronment, which brings the bioethics of these projects into

question. In 2009, the small-scale release of transgenic
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mosquitoes was announced on Grand Cayman Island.

This provoked controversy and divided opinions within

the group of scientists dedicated to testing GM vectors

(Enserink, 2010; Subbaraman, 2011).

In Mexico, Ramsey et al. (2014) developed a regulatory

structure for working with genetically modified Ae. aegypti

under field conditions, according to the guidelines of: (1)

the National Intersecretarial Commission for Biosafety of

Genetically Modified Organisms (CIBIOGEM), which is

the federal agency that regulates the release of genetically

modified organisms (GMO), and (2) the National Insti-

tute of Public Health / Regional Center for Public Health

Research (INSP/CRISP), as well as (3) the Rio Florido

community council, Chiapas, Mexico, as the regulatory

organ for making community decisions. Following com-

pliance with the regulatory, social, and infrastructural

requirements, testing was initiated under field cage condi-

tions (Facchinelli et al., 2013).

Despite advances in the regulatory framework for this

specific project, the technique has not been upscaled for

wide application. A limiting factor is the lack of a general

clear regulatory framework regarding the release of GMO

in Mexico and many developing countries (Quemada,

2016). Another limitation has been social and political

opposition due to established prejudices and concerns on

the ecological implications, considering that mosquito dis-

persal cannot be controlled (Handler, 2002).

Future perspectives

Efficient methods for sex separation still represent a

major challenge for large-scale application of the SIT for

Aedes spp. suppression. It is therefore vital to develop

and characterize efficient mechanisms for sex separation

– the two approaches currently available (classical

genetics and transgenics), both present strengths and

weaknesses.

The GSS currently established in SIT operational pro-

grams for other insect pests have been developed using

classical genetics approaches, based on conditional or visi-

ble mutations that serve as selectable genetic markers, as

well as chromosomal reordering (translocations linked to

themale). In this way, a pseudo-sexual dimorphism is gen-

erated, in which the males are heterozygous and the

females homozygous for the mutation, enabling separa-

tion of the males. Mutations such as genes with potential

use in GSS have been evaluated; these express a visible phe-

notype, such as: pupal color (R€ossler, 1979), wing mor-

phology (McCombs & Saul, 1992), egg color (Tazima

et al., 1951), and eye color (R€ossler & Rosenthal, 1988). In

addition, there are those that confer a conditional lethal

effect: resistance to insecticides (Seawright et al., 1978),

sensitivity to temperature (Franz et al., 1996), and lethal

recessives (applied to ZW sex chromosome systems)

(Marec, 1991). The Mediterranean fruit fly, C. capitata, is

a model organism that presents a genetic sexing system

comprising two genetic markers (sensitivity to tempera-

ture and pupal color) that can be applied to the separation

of females during the immature stages. It is also one of the

strains in which constant innovation is possible in the

genetic construction of its sexing strains, in order to opti-

mize the mass rearing and release processes (Franz, 2005;

Meza, 2020).

Development of GSS for mosquito SIT using natural

mutants and classical genetic approaches need to overcome

the following disadvantages: (1) delay in the analysis of

mutations and strains for isolating a suitable genetic mar-

ker, (2) effort required to translocate the selectable marker

to the Y chromosome, (3) lack of guaranteed success due

to unpredictability, and (4) reduced sexual performance of

the mass-reared males (Papathanos et al., 2018). In con-

trast, the transgenic approach has the following advantages

(a) existence of broad knowledge in relation to the formal

genetics of Ae. aegypti and Ae. albopictus (Craig & Hickey,

1967a,b), (b) elimination of females in the early stages of

development, which generates significant savings in terms

of production costs over the course of an action program,

and (c) the possibility of releasing males in the pupal stage

for subsequent emergence of adults (Papathanos et al.,

2009). However, after exploring the use of molecular,

mechanical, and behavioural approaches, as well as those

of classical genetics to achieve sexual separation in mosqui-

toes, it was concluded that classical genetic methods were

the best option, as these can be used without regulatory

restrictions. In contrast, the release of transgenic strains in

SIT programs, despite notable advances, remains strictly

regulated (Gilles et al., 2014).

Conclusions

The current SIT technological package developed for the

suppression of Aedes mosquitoes provides a solid frame-

work for the application of SIT within an area-wide inte-

grated vector management approach. The only limiting

factor for operational use on a large scale is the practical

challenge of removing females following mass-rearing.

Progress has beenmade in the development and character-

ization of GSS through classical genetic methods and it

seems possible to produce strains in which females can be

separated in large numbers and with a high level of accu-

racy (>99%). Considering the social, ethical, and legal lim-

itations for transgenic strains, we conclude that the

development of genetic sexing strains through classical

genetic methods likely represents the best option for SIT-

based operational programs.
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