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ABSTRACT

The massive arrival of pelagic Sargassum on the coasts of several countries of the
Atlantic Ocean began in 2011 and to date continues to generate social and
environmental challenges for the region. Therefore, knowing the distribution and
quantity of Sargassum in the ocean, coasts, and beaches is necessary to understand
the phenomenon and develop protocols for its management, use, and final disposal.
In this context, the present study proposes a methodology to calculate the area
Sargassum occupies on beaches in square meters, based on the semantic
segmentation of aerial images using the pix2pix architecture. For training and testing
the algorithm, a unique dataset was built from scratch, consisting of 15,268 aerial
images segmented into three classes. The images correspond to beaches in the cities
of Mahahual and Puerto Morelos, located in Quintana Roo, Mexico. To analyze the
results the fB-score metric was used. The results for the Sargassum class indicate that
there is a balance between false positives and false negatives, with a slight bias
towards false negatives, which means that the algorithm tends to underestimate the
Sargassum pixels in the images. To know the confidence intervals within which the
algorithm performs better, the results of the f0.5-score metric were resampled by
bootstrapping considering all classes and considering only the Sargassum class. From
the above, we found that the algorithm offers better performance when segmenting
Sargassum images on the sand. From the results, maps showing the Sargassum
coverage area along the beach were designed to complement the previous ones and
provide insight into the field of study.

Subjects Computational Science, Environmental Contamination and Remediation, Environmental
Impacts, Spatial and Geographic Information Science

Keywords Beach monitoring, Artifitial neural network, Drone imagery, Remote sensing, Algal
bloom, Geographical information system, Caribean sea

INTRODUCTION

Sargassum is a widespread macroalgae found in oceans worldwide, the records of 351
species have been documented (Guiry et al., 2014). Most species are benthic, i.e., they live
on the seafloor. Only the species Sargassum natans and Sargassum fluitans, which from
now on will be referred to as Sargassum, are holopelagic, i.e., they float freely on the sea
surface throughout their life cycle (Dawes & Mathieson, 2008; Amaral-Zettler et al., 2017).
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Sargassum is usually distributed in the Sargasso Sea, the north Caribbean Sea, and the Gulf
of Mexico, forming a clockwise “Sargassum migratory loop system” (Webster ¢» Linton,
2013). In the open ocean, Sargassum rafts are a unique floating ecosystem in oceanic
waters, which are generally poor in substrates and nutrients (Amaral-Zettler et al., 2017).
As a result, floating Sargassum hosts a wide variety of invertebrate, fish, and turtle species
(Coston-Clements et al., 1991; Rodriguez-Martinez, van Tussenbroek & Jorddn-Dahlgren,
2016), providing ecosystem services such as refuge, feeding, and breeding areas for
numerous species of high ecological and commercial interests (Rooker, Turner ¢» Holt,
2006; Witherington, Hirama & Hardy, 2012).

On the other hand, Sargassum becomes a challenge when it accumulates in large
quantities along the beaches, as it begins to unbalance the carrying capacity of ecosystems
(Del Monte-Luna et al., 2004), occupying space and resources. For example, the large
amount of biomass on the surface hinders the passage of light, affecting the flora (Van
Tussenbroek et al., 2017) and fauna (Rodriguez-Martinez et al., 2019) of the seabed. When
this large amount of organic matter enters a state of decomposition, it favors
eutrophication and water pollution, affecting coastal ecosystems (Van Tussenbroek et al.,
2017), the health of the inhabitants (Resiere et al., 2018; Fraga ¢ Robledo, 2022), and the
socioeconomic balance of the surrounding communities (Martinez-Gonzdlez, 2019;
Chavez et al., 2020). For all these reasons, it is useful to be able to map and quantify
Sargassum along the beach, one option to address this task is by proximal remote sensing.

Sargassum ocean observation from space began in 2005 analyzing imagery from the
sensors MERIS-Envisat, and MODIS-Terra/Aqua through the indices Maximum
Chlorophyll Index (MCI), and Fluorescence Line Height (FLH), traditionally used for
Chlorophyll a monitoring (Gower et al., 2006). The analysis of the images provided by
satellite platforms using novel indices began in an attempt to highlight floating objects in
the ocean. For instance the Floating Algae Index (FAI) (Hu, 2009) and the Alternative
Floating Algae Index (AFAI) (Wang ¢» Hu, 2016) have helped monitor Sargassum at
mesoscale and synoptic scales and have helped to observe its presence in the Atlantic
Ocean (Wang ¢» Hu, 2016), enabling the study of large Sargassum arrivals along the coasts
of the Caribbean Sea in recent years (Wang et al., 2019). However, due to various
atmospheric phenomena, as well as the technical characteristics of sensors and satellite
platforms, it is not always possible to have the desired scenario for studying and
monitoring Sargassum in the open ocean (Lazcano-Hernandez, Arellano-Verdejo ¢
Rodriguez-Martinez, 2023). For instance, atmospheric humidity, clouds, intense solar
reflections, water turbidity, and African dust are some factors that hinder the observation
of Sargassum in satellite images (Wang ¢ Hu, 2016). In addition, satellite platforms have a
defined periodicity in their orbit and height above the Earth, so that the temporal and
spatial resolution of the images are fixed for each satellite sensor. On the other hand, from
the spectral point of view, the atmosphere hinders the observation of some wavelengths
associated with chlorophyll fluorescence with peaks at 685 and 740 nm, reflected by
vegetation (IR) (Lazcano-Herndndez et al., 2019). For example, water vapor is a filter at
730 nm, and oxygen shows absorption at 687 and 760 nm (Abbott & Letelier, 1999).
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Because of the above, having a useful image of the area under investigation at the desired
time is not always possible.

In addition to the atmospheric and technical challenges already discussed in ocean
monitoring through the analysis of satellite images using ocean color indices, the
observation of Sargassum on the coast from space is compounded by the biodiversity of the
region and the transparency of shallow waters. This increases the radiation reflected or
scattered by the areas surrounding the pixel of interest to also be captured by the sensor
and associated with that pixel as its own. This phenomenon is known as adjacency (Wang
¢» Hu, 2016), which generates a lower contrast of Sargassum with the surrounding
environment, making its observation and monitoring more complex. This is why, despite
their usefulness in the open sea, in coastal waters, ocean color indices such as FLH, FAI,
and AFAI are less able to highlight the Sargassum from the surrounding background,
causing a drastic reduction in their usefulness under such conditions (Lazcano-Hernandez,
Arellano-Verdejo & Rodriguez-Martinez, 2023).

To address the challenges faced in the monitoring of Sargassum in nearshore waters,
recent studies have applied deep learning (DL) techniques to provide solutions from a
different perspective and reduce false positives when applying ocean color indices. For
instance, in the year 2019, a convolutional neural network (CNN), named ERISNet, was
proposed for MODIS pixel classification (Arellano-Verdejo, Lazcano-Hernandez ¢
Cabanillas-Terdn, 2019); in 2020, the trainable nonlinear reaction-diffusion (TNRD)
denoising model was implemented to minimize the noise in the MSI-FAI images, to
facilitate the extraction of Sargassum features within the imagery (Wang ¢» Hu, 2020); in
2021, a CNN named VGGUnet was proposed to automatically detect and quantify
Sargassum macroalgae from various high-resolution multi-sensors (Wang ¢ Hu, 2021);
and in the year 2022, a u-net (Ronneberger, Fischer ¢ Brox, 2015) was adapted to extract
Sargassum features from Dove imagery along beaches and nearshore waters (Zhang et al,
2022). However, due to the dynamics of Sargassum stranding and the aforementioned
limitations of satellite remote sensing, these solutions are insufficient and should be
complemented by aerial imagery at other scales and in-situ information to help validate
satellite information and fill information gaps.

On the other hand, Sargassum monitoring on beaches increased in 2018 due to
Sargassum blooms on several beaches in the Caribbean. To complement the data provided
for satellite imagery, the scientific community incorporated several techniques for data
collection along the beaches; for instance, citizen science (Alvarez-Carranza ¢ Lazcano-
Herndndez, 2019; Arellano-Verdejo ¢ Lazcano-Hernandez, 2020; Iporac et al., 2019;
Putman et al., 2023) and network camera systems (Rutten et al., 2021). This information
enabled the building of datasets to train DL algorithms capable of classifying photographs
with/without Sargassum (Arellano-Verdejo ¢» Lazcano-Herndndez, 2021), classifying beach
photographs with or without beach perspective (Santos-Romero et al., 2022), and
segmenting Sargassum into snapshots (Arellano-Verdejo, Santos-Romero & Lazcano-
Hernandez, 2022) to create Sargassum coverage maps from beach-level photographs. The
semantic segmentation technique in Fig. 1 has been one of the most widely used DL
methodologies for identifying Sargassum within the collected beach-level photographs
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(Valentini & Balouin, 2020; Balado et al., 2021; Arellano-Verdejo, Santos-Romero &
Lazcano-Hernandez, 2022). Table 1 shows a summary of some characteristics of the most
recent publications using computer vision techniques for the classification or semantic
segmentation of macroalgae within photographs.

Although beach photographs are not affected by all the atmospheric phenomena that
affect satellite images, the environmental conditions of the photographic capture, such as
natural lighting, shadows, and the presence of additional objects in the scene, can influence
the quality of the image. Additionally, in citizen science, the sensors in cameras and
smartphones used by volunteers and researchers could have different technical features.
Therefore, the collected images will vary in aspects such as sharpness, white balance, blur,
or noise. These differences are a challenge for the algorithms that must process and analyze
the photographs. However, artificial neural network algorithms and computer vision offer
novel solutions to address these challenges. It is possible to train models capable of
performing image classification efficiently, even when image quality varies considerably.
These models can be trained using sets of labeled images, with examples of the presence of
Sargassum and clean beach images, captured under several conditions and with different
devices, allowing the algorithms to learn to identify patterns and distinctive features of the
Sargassum (Arellano-Verdejo ¢» Lazcano-Herndndez, 2021). In addition to the type of
architecture, the performance of an algorithm depends on the quality of the dataset, in the
context of Sargassum monitoring, the study (Arellano-Verdejo ¢ Lazcano-Hernandez,

In press) analyzes the impact of image quality on five neural network architectures; to
evaluate the quality of the images the study uses the metrics of blur, BRISQUE and
entropy.

In-situ monitoring of Sargassum is important to validate remote sensing results and to
fill information gaps, but it also faces several limitations that are sometimes unavoidable.
These limitations include the presence of Sargassum along hundreds of kilometers of
beaches, the limited availability of electrical and Internet infrastructure needed to install
surveillance camera networks, the need for a budget to cover the costs of maintenance and
monitoring to maximize the useful life of the equipment and prevent looting; the legislative
work for the design of surveillance systems on beaches, as the construction of
infrastructure in protected natural areas, may be prohibited or must go through a rigorous
approval process. On the other hand, citizen science data collection has low participation
rates, and there is also a need to consolidate platforms for information exchange at the
beach level, considering standardized metadata. To meet the challenges mentioned above,
it is advisable to incorporate methodologies that help make measurements, at a local scale,
in a faster and more efficient way. In this sense, the use of an unmanned aerial vehicle
(UAV), commonly known as a drone, is considered a viable alternative to complement in-
situ and satellite remote sensing observations (Chen et al., 2023).

The contributions of this study to the state-of-the-art include the construction of the
first dataset of very high-resolution segmented aerial imagery for beaches with
accumulated Sargassum. This dataset provides highly representative of coastal conditions,
and it can be employed for the evaluation and comparison of different semantic
segmentation algorithms in the context of Sargassum, serving as a benchmark for
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A  Source image B Segmented image

Figure 1 Semantic segmentation is a technique in computer vision that involves labeling each pixel
of an image with a category or class, allowing a detailed understanding of its visual content. In the
image, you can see (A) the source image and (B) the segmented image with five classes: sand (yellow),
Sargassum (brown); water (cyan), vegetation (green), and sky (light blue).

Full-size K&l DOT: 10.7717/peerj.18192/fig-1

measuring the performance and effectiveness of the approaches. The semantic
segmentation of Sargassum in aerial orthophotos allows the area calculation of Sargassum
coverage along the beach in square meters and the design of high-resolution maps of
Sargassum coverage.

THEORETICAL FRAMEWORK

Semantic segmentation

Semantic segmentation is an advanced technique in the field of computer vision that plays
a key role in a variety of applications, from autonomous driving (Rizzoli, Barbato &
Zanuttigh, 2022) to object detection in medical images (Asgari Taghanaki et al., 2021). As
shown in Fig. 1, semantic segmentation involves assigning a semantic label to each pixel in
an image, allowing objects or regions of interest within the image to be identified and
differentiated. In the context of Sargassum detection, we can accurately distinguish
Sargassum from other features in a coastal image, such as sand and water (Arellano-
Verdejo, Santos-Romero & Lazcano-Hernandez, 2022).

One of the most widely used architectures in semantic segmentation, based on
convolutional neural networks (CNNs) is the u-net (Ronneberger, Fischer ¢ Brox, 2015).
U-net is a type of CNN proposed by Ronneberger, Fischer ¢ Brox (2015). The u-net’s name
is derived from its shape reminiscent of the letter “U” as observed in Fig. 2. The unique
u-net architecture has become a benchmark in the DL community for semantic
segmentation tasks and has been adopted and extended in a variety of applications, from
medicine (Huang et al., 2020) to robotics (Teso-Fz-Betofio et al., 2020).

The u-net consists of two main parts: an encoding phase that gradually reduces the
spatial resolution of the image and a decoding phase that restores it to its original resolution
allowing the network to capture both high-level features and fine details. The u-net uses
skip connections that connect layers from the encoding phase to the corresponding layers
in the decoding phase. These connections allow information to flow directly from the
encoding layers to the decoding layers, which assists in preserving important details during
segmentation. The main contribution of u-net lies in its ability to effectively handle
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Table 1 Some features of recent publications using computer vision techniques for the classification or semantic segmentation of macroalgae
in photographs taken along beaches.

Paper Task CNN architecture/Dataset/Final product
Valentini ¢ Balouin (2020) Coastal image classification MobileNetv2/Dataset available from the authors/Image classifier
Balado et al. (2021) Semantic segmentation of images of five Mobilnetv2, Resnet 18, and Xception/Dataset available from the
different macroalgae authors/Semantic image segmenter
Arellano-Verdejo ¢ Lazcano-Herndndez ~Classifying images with/without AlexNet/https://doi.org/10.6084/m9.figshare.13256174.v5
(2021) Sargassum Sargassum presence/absence map
Santos-Romero et al. (2022) Classifying imagery with or without MobileNetv2/Dataset available from the authors/Image cassifier
beach perspective
Arellano-Verdejo, Santos-Romero ¢ Segmenting Sargassum into snapshots  Pix2pix/https://doi.org/10.6084/m9.figshare.16550166.v1
Lazcano-Hernandez (2022) Percentage of Sargassum coverage map

semantic segmentation, even in scenarios with low training data availability. Its skip
connections, symmetric architecture, and customizable loss functions make it adaptable to
diverse tasks.

On the other hand, pix2pix is a conditional generative adversarial network (cGAN)
based on a u-net (see Fig. 3). Pix2pix was developed by researchers at the University of
California, Berkeley, in 2016, (Isola et al., 2017). The cGAN is a variant of GANs
(Generative Adversarial Networks), in which image generation from a given input is
conditional. In the case of pix2Pix, this input is an image in an original domain that will be
transformed into an image in a target domain.

The pix2pix architecture consists of two main parts: the generator and the
discriminator. The generator takes the input image in the original domain and produces an
image in the target domain. The discriminator acts as a critic that evaluates whether an
image is real (produced by the generator) or true (from the training dataset). During
training, the generator and the discriminator engage in a zero-sum game, in which the
generator tries to generate images that fool the discriminator, and the discriminator tries to
identify the generated images.

Pix2pix has proven its versatility in various applications, such as image restoration (Pan
et al., 2020), image translation (Zhu et al., 2017), artwork creation (Xue, 2021), and
semantic segmentation (Arellano-Verdejo, Santos-Romero ¢ Lazcano-Hernandez, 2022).
One of the main advantages of pix2pix is its ability to work with unbalanced and relatively
small datasets with a few thousand images (Isola et al., 2017). In the present study, pix2pix
has been employed to perform semantic segmentation of images with the presence of
Sargassum.

MATERIALS AND METHODS

Pix2pix settings

For the pix2pix algorithm used in this study, the encoder implemented convolutional
modules (C) with the subsequent distribution: C64 - C128 - C256 - C512 - C512 - C512 -
C512 - C512 - C512, employing LeakyReLU activation functionality. The numeral ensuing
the letter C specifies the number of filters employed in the convolutional layer, as indicated
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skip connections

input— — —— output

Figure 2 A u-net is a convolutional neural network architecture designed specifically for semantic
segmentation tasks in images, characterized by its U-shaped structure.
Full-size K&l DOI: 10.7717/peer;j.18192/fig-2

in Isola et al. (2017). The initial block (C64) utilized a batch normalization function. The
decoder, conversely, utilized convolutional modules with the subsequent distribution:
CD512 - CD512 - CD512 - CD512 - C512 - C256 - C128 - C64 were used with a ReLu
activation function. The first three CD512 blocks incorporated a Dropout function with a
probability of 0.5. All networks were trained from scratch. Layer weights were initialized
from a Gaussian distribution with a mean of 0 and a standard deviation of 0.02. However,
the discriminator network implemented a convolutional (C) architecture with the
following distribution: C64 - C128 - C256 - C512 with a LeakyReLU activation function.
As with the generator, the layer weights were initialized using a Gaussian distribution with
a mean of 0 and a standard deviation of 0.02. The generator loss function was then
estimated by calculating the average absolute error between the u-net output and the target
image. The discriminator’s loss value was determined by summing the discrepancies
between the actual value and the value detected by the discriminator, along with the
disparities between the discriminator’s detected false values. The network underwent 30
generations of training.

Table 2 shows the number of parameters that are part of the model used to perform the
semantic segmentation. As demonstrated in the table, the number of parameters of the
generator is higher than the total number of parameters of the discriminator, which is not
surprising given the pix2pix architecture. It is worth mentioning that not all parameters
needed to be adjusted during the training phase.

The pix2pix algorithm was implemented using the Python 3.10.9 programming
language and the TensorFlow 2.10 library. All tests were performed using the Windows 10
operating system running on an Intel i5-6300HQ CPU @ 2.30 GHz, with 32 GB of RAM.
An Nvidia GeForce GTX 950 M card was used to train the algorithms and the training time
was approximately 12 h.

Dataset

The training dataset is critical in DL algorithms since it provides the basis for a model to
acquire knowledge and learn to perform specific tasks. This data allows the model to
identify patterns, relationships, and features in the provided examples, enabling it to
generalize and make accurate decisions on new and unseen data during the training phase.
The quality and representativeness of the training dataset have a direct impact on the
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skip connections

input——| output

Generator

D» output

Discriminator

Figure 3 Pix2pix is a conditional generative adversarial network (cGAN) used to transform images
from one original domain to another, allowing the translation and generation of realistic and
detailed images. Full-size Kal DOI: 10.7717/peerj.18192/fig-3

performance and generalization capability of the model, so careful selection and
preparation of this dataset is critical in the successful training of DL algorithms.

At the time this study was conducted, there were several open-access datasets used to
train many of the state-of-the-art semantic segmentation algorithms. One of the most
widely used is the COCO (https://cocodataset.org) (Common Objects in Context) dataset,
which offers a wide range of images that include detailed semantic segmentations of objects
in various contexts. COCO serves for both object detection and semantic segmentation.
KITTI (https://www.cvlibs.net/datasets/kitti/) is another widely used dataset in perception
and computer vision, specifically in applications of autonomous vehicles and driver
assistance systems. This dataset comes from the KITTI project (Karlsruhe Institute of
Technology and Toyota Technological Institute at Chicago) consisting of various image
sequences and sensor data collected by a vehicle equipped with multiple cameras, lidar, and
other sensors while driving in different urban and road environments. Finally, another
dataset is Cityscapes (https://www.cityscapes-dataset.com/) which focuses on the semantic
segmentation of urban scenes. It contains images of cities captured by vehicles equipped
with cameras, and the labels include detailed segmentations of urban objects, such as streets,
cars, and traffic signs. These are just a few examples of public datasets widely used in the
field of semantic segmentation, and each one has its characteristics and challenges that make
it valuable for training and evaluating algorithms in this area; however, in emerging
problems, the lack of training datasets is one of the main issues.

The lack of datasets to train machine learning algorithms on emerging problems, such
as Sargassum monitoring, is due to multiple reasons. First, these problems are often recent
or unique, meaning that data collection may be limited or nonexistent. In addition, these
issues can vary considerably by geographic location and time, making it difficult to create a
generalized dataset. Data collection for addressing these problems can also be costly and
logistically complicated; for example, the use of sensors in the ocean or conducting field
surveys. In addition, the changing nature of emerging problems means that data initially
collected may become obsolete as the situation evolves. In some cases, the need to label or
annotate data can be a costly process. Finally, data are often held by government or private
entities, making it difficult for public access when creating datasets.
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Table 2 Number of pix2pix model parameters. The pix2pix model is composed of two components:
the generator and the discriminator. The parameters of each component are adjusted during the training
phase.

Pix2pix

Generator Discriminator
Trainable parameters 54,415,043 2,768,705
Non-trainable parameters 10,880 1,792
Total 57,196,420

The dataset used during the present study was elaborated from very high-resolution
aerial images taken on the beaches of Puerto Morelos (SAMMO, 2020) and Mahahual,
both in the state of Quintana Roo, Mexico. These images were taken on different dates and
times of the day when diverse accumulations of Sargassum were present on the beach, as
well as a variation in the lighting conditions, shadows, and the effects of the weather.

For the beach town of Mahahual, photographs were taken with a “DJI Air 2” drone
between 10:00 and 14:00 h on April 21, 2021. Dronelink application supported
autonomous flight (https://www.dronelink.com/). The main parameters flying were the
following: flight altitude of 56.2 m, vertical displacement speed of 16 km/h, front overlap of
80%, side overlap of 70%, and picture shot rate of 2 s; from these parameters, the obtained
GSD was m per pixel. For the beach town of Puerto Morelos, the images were provided by
SAMMO (2020), and flights parameters can be requested through their customer service
website (https://sammo.icmyl.unam.mx/).

To construct the dataset, five very high-resolution aerial images were used. As shown in
Fig. 4 the images were processed using a windowing method with a 50% overlap. A
reasonable overlap can reduce variability in model predictions by considering multiple
perspectives of the input data. A smaller overlap could result in losing significant detail
between windows, which could negatively affect model performance. A 50% overlap
ensures that approximately half of the data in one window overlaps with the adjacent
window. This allows for the model to see redundant information in both windows, which
can assist in capturing relevant patterns and features within the data.

The final dataset consists of 15,268 RGB (red, green, blue) images, at 256 x 256 pixels
each one. Using an 80/20 ratio, the images were divided randomly into two parts, namely
the training dataset with 12,214 items, and the test dataset with 3,054 items.

The entropy (Eq. (1)) of an image is interpreted as a measure of the randomness or
uncertainty present in the distribution of gray levels (or colors) in that image and is used as
a metric for evaluating the information and content it provides. If the entropy is low, it
means the image has a very predictable and uniform pixel distribution. In other words,
there is significant repetition of gray levels or colors. This could indicate an image with
homogeneous background areas. On the other hand, if the entropy is high, the image has a
less predictable pixel distribution and more variability in the gray levels or colors, which
could suggest the presence of details, edges, or diverse content in the image. Figure 5 shows
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Figure 4 The very high-resolution image is divided into 256 x 256 pixel windows with a 50% overlap
to assist in making the most of the input data information and contribute to robust and accurate
model performance. In some cases, this value can, however, be adjusted according to the specific
needs of the problem or data type. Full-size k&l DOL: 10.7717/peer;.18192/fig-4

the histogram showing the entropy of the dataset created for training the model. As
demonstrated in Fig. 5, there are many images containing a low entropy, probably due to
the fact that these images belong mainly to homogeneous areas such as sand, sea, and
Sargassum, resulting in a low stress on the algorithm during the training phase, and
causing a possible lack of generalization.

HOO = Y pltogs () <1>

Due to the low variability of the aerial images, where the main element observed is
water, the average value of the final entropy (indicated in red) is relatively low, which
implies an unbalanced dataset from the information point of view, making the model
training process and the segmentation task more complex.

Finally, in blue, we can observe the cumulative probability density of the entropy
calculated for the final dataset. The cumulative probability density allows us to understand
the probability with which the images are selected within the dataset at the time of training.
As demonstrated in Fig. 5, there is a high probability of selecting images with a low
entropy, which can cause the model to learn to identify patterns within the images with a
uniform distribution of pixels. On the other hand, there is also a high probability of
selecting images with a higher average entropy, which provides the algorithm with
information about details that may be important when performing the final segmentation.

To show the number of pixels per class within the dataset, in Fig. 6, three histograms are
presented. As it may be observed, the dataset contains many pixels with little information
related to the classes Sargassum and sand. In the histograms on the left and in the middle,
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Figure 5 Entropy in an image measures randomness. Low entropy implies a uniform pixel distribu-
tion, often in homogeneous backgrounds. High entropy suggests varied content. The dataset histogram
reveals many low-entropy images, mainly in homogeneous areas like sand, sea, and Sargassum, which
may limit algorithm generalization. Full-size k&l DOL: 10.7717/peerj.18192/fig-5

it is evident that few images clearly distinguish pixels with Sargassum and sand, which can
be a challenge when learning to classify pixels of these classes. This is possible because the
aerial images of the beach, by the nature of the scene, contain mostly water-related
information. Finally, the histogram on the right shows that the pixels labeled as “other” do
not present the same bias as the other two classes, which is related, again to the nature of
the scene. This allows us to conclude that, due to the nature of the phenomenon and the
images, the dataset will be consequently unbalanced, which again represents a challenge for
classical segmentation algorithms.

F f-score metric

The f-score is a metric used in statistics and ML to evaluate the accuracy of a classification
model. It is useful when dealing with binary classification problems, where one tries to
predict whether an item belongs to one of two classes, for example, positive or negative.
The f-score combines two metrics: precision and recall. These metrics are used together
because they compensate for each other and provide a more complete view of model
performance.

Precision (Eq. (2)) measures the proportion of positive predictions made by the model
that are correct. It is calculated as the number of true positives (TP) divided by the sum of
true positives and false positives (FP). On the other hand recall (Eq. (3)) measures the
proportion of TP cases that the model correctly identified and is calculated as the number
of TP divided by the sum of TP and false negatives (FN).
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The f-score is relevant because it provides a balanced measure of the performance of a
classification model, considering both the model’s ability to make correct predictions
(accuracy) and its ability to identify all relevant cases (completeness). Depending on the
application, the threshold for model decision-making can be adjusted to balance accuracy
and completeness according to the needs of the problem. For example, in medical
problems, it is crucial to maximize completeness so as not to lose positive cases, even if that
means accepting some false positives. In other cases, such as spam detection, it is more
important to maximize accuracy, even if that may result in lower completeness. The f-score
assists in finding the right balance.

The f-score value varies between 0 and 1, where a higher f-score indicates better model
performance. An f-score of 1 means that the model has perfect precision and recall, which
is rare in practice. The f-score is a particular case of f-f§ score when f takes the value of 1.
The f — f score is computed as shown in Eq. (4).

precision - recall

f-B=(1+p)- (4)

B* - precision + recall
where:

p is a positive value that determines the weighting of precision relative to recall. A value
of f = 1 results in an fI-score, while f > 1 gives greater importance to precision, and f§ < 1
gives higher importance to recall. Note that when the f value is equal to zero, the metric
becomes the precision.

The f-f score is used when more control is needed over how accuracy is weighted
compared to recall. For example, in problems where the priority is to minimize FPs, even if
that means lower recall, a f§ value less than 1 could be used. On the other hand, in problems
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where you want to minimize FNs even if that results in more FPs, a f value greater than 1
could be used. To evaluate the effectiveness of the model presented in this study two values
were used for ff: f = 0.5 and =2 (Egs. (5) and (6)).

precision - recall
0.25 - precision + recall

f0.5=1.25- (5)

precision - recall

fa=5s ©)

4. precision + recall

The f0.5 score emphasizes the precision metric, which is valuable when we want to
minimize false positives by ensuring that Sargassum detections are truly accurate and not
confused with other elements such as sand or water. This is essential to avoid false positives
that could lead to misinterpretation of the results. On the other hand, the f2 score gives
more weight to recall, which is crucial in Sargassum detection, as we want to minimize false
negatives and ensure that as much Sargassum as possible is correctly identified. This is
important in applications where complete detection of Sargassum significantly involves the
management and mitigation of its impact.

Figure 7 shows the value for f0.5 and f2 metrics as a function of the FPs and FNss.
Assuming that the value of TNs does not change, in Fig. 7A, the value of the f0.5 and f2
metrics decreases as FPs and FNs increase. In terms of our study, the above would mean
that the model is failing to classify the pixels. Therefore, pixels in the “Sargassum” class
would be classified as the “other” class, while pixels in the “other” class would be classified
in the “Sargassum” class.

Figure 7B shows the opposite case. If the value of the TN remains fixed, as the values of
FP and FN decrease, the value of the metrics f0.5 and f2 increases, which means that the
model is classifying the pixels correctly, and most likely, the ratio of FP and FN are similar.
Thus the system has achieved a trade-off by minimizing FP and FN, a desirable scenario.
Note that the curves for the cases shown in Figs. 7A and 7B are overlapped.

Figure 7C shows the case where the FP values grow, and the FN values remain
unchanged. In this case, the value of the f2 metric is greater than the value of the 0.5
metric. This means that the system is classifying pixels in the “others” class as if they were
pixels in the “Sargassum” class. This would mean that the system is overestimating the
number of pixels in the “Sargassum” class, which is undesirable.

Finally, in Fig. 7D, the opposite case is depicted (FN values increase and the FPs remain
unchanged). In this case, the value of the f0.5 metric is greater than the value of the 2
metric, which means that the system is classifying pixels in the “Sargassum” class as pixels
in the “other” class, which implies that the system is underestimating.

Resampling

The bootstrapping resampling method is a statistical technique used to estimate the
distribution of a statistic of interest and provides a robust, data-driven perspective for
evaluating supervised learning algorithms. Using the resampling technique, one can obtain
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more accurate estimates of model performance and better understand model variability
under different conditions.

Bootstrap resampling offers several advantages over cross-validation in the evaluation
of neural network performance. These advantages include the ability to provide more
robust and less biased estimates of model performance, better capture of uncertainty in
performance estimation, the ability to construct accurate confidence intervals, and reduced
susceptibility to variations in training and test datasets. These features make the bootstrap
a valuable tool in the evaluation and analysis of neural network model performance,
especially in contexts where data variability and estimation accuracy are critical.

When calculating performance metrics, such as accuracy, recall, or Ffi-score, in a test
dataset, bootstrapping can provide confidence intervals for these metrics. This is useful to
understand the variability in model performance and to have a more accurate estimate of
model quality. In this study, resampling was used to calculate confidence intervals for the
F0.5-score performance metric from 2,000 samples, which we believe can be valuable for
understanding the generalization capability of pix2pix because, by calculating performance
metrics for each sample, the total error can be decomposed in terms of bias and variance.
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RESULTS AND DISCUSSION

One of the main contributions of this study is to create the first dataset of very
high-resolution segmented aerial imagery for beaches with accumulated Sargassum. The
semantic segmentation dataset of Sargassum imagery developed provides highly
representative and diverse, encompassing a variety of coastal situations and conditions.
The semantic segmentation labels have been created with accuracy and consistency,
ensuring reliable labels and detailed information on the location and extent of Sargassum
in each image. In addition, it can be employed for the evaluation and comparison of
different semantic segmentation algorithms in the context of Sargassum, serving as a
benchmark for measuring the performance and effectiveness of the approaches.

The analysis and discussion of the results is presented in two phases. On the one hand,
the general performance of the pix2pix model will be analyzed; for instance, how the model
is capable of segmenting an image into all its classes (Sargassum, sand, and others). Then,
the analysis of the algorithm performance specifically for the Sargassum class will be
shown, and the differences concerning the general case will be discussed. Finally, the
potential areas where the algorithm could be applied in real cases will be presented.

General performance of the pix2pix model

In the context of the present study, and to make use of the metrics derived from the
confusion matrix, we will refer to the Sargassum pixels as “positives” and the rest of the
pixels as “negatives”.

By using the trained pix2pix model, semantic segmentation was performed on the 3,054
images of the test dataset.

Table 3 shows the results for the metrics used to evaluate the pix2pix model. Comparing
precision and recall results, we can see a difference between them. Both the mean and
median values are higher in the case of precision. When the number of FP (pixels of the
sand and other classes classified as Sargassum class) tends to zero, the precision metric
tends to one, while for the recall, when the number of FNs (pixels of the Sargassum class
classified as “sand” and “other”) tends to zero, the recall metric tends to one. The above
shows that the pix2pix model tends to minimize the number of FPs concerning FNs. In
short, the proportion of Sargassum pixels that pix2pix misclassifies is smaller than the
number of Sargassum pixels it is unable to detect. Thus pix2pix tends to slightly
underestimate the amount of Sargassum it can observe, which in our case is not serious,
since it is known at what times of the year Sargassum is upwelling on the beaches, what we
are looking for is a quantitative estimation of the surface area of Sargassum cover on the
beach.

Given the context of this study, it is preferable that the system underestimate rather than
overestimate. There is evidence that Sargassum arrival in the Caribbean occurs with greater
intensity in the spring-summer season (Wang ¢» Hu, 2016; Wang et al., 2019). Therefore,
the fact that the algorithm underestimates the presence of Sargassum (f0.5 > f2) is not
critical for its adequate management and handling. It is de facto known that the
macroalgae are present, and what is sought is a quantitative estimate of the area of
Sargassum coverage that avoids falling into the sensationalism of the phenomenon.
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Table 3 Stats.

Mean Sd Median Mad Max
Precision 0.8926 0.1320 0.9355 0.0830 0.9999
Recall 0.8469 0.1783 0.8990 0.1217 0.9999
0.5 0.8637 0.1620 0.9163 0.1028 0.9999
2 0.8450 0.1801 0.8984 0.1213 0.9999

A better metric would consider the two previous cases, a trade-off between precision
and recall. For this, the f0.5 and f2 metrics (ff score with values for f§ of 0.5 and 2.0) were
used. Table 3 shows that the mean and median values are slightly higher for the case of an
£0.5 score, confirming again that the system tends to slightly underestimate the results.

To show the dispersion of the results obtained by the pix2pix model when segmenting
aerial images, a number of steps were followed. First, the performance of the pix2pix model
was tested by segmenting the three classes (Sargassum, sand, and other), and then the same
procedure was performed only for the Sargassum class. In both cases, precision, recall, and
ff-score metrics were calculated for f = 0.5 and f = 2 to measure the relationship
between TP, FP, and FN. Finally, to obtain the confidence intervals of the segmentation
algorithm, the results were resampled using the bootstrapping technique.

Figure 8A shows the box plot where the dispersion of the resulting data for the precision
and recall metrics can be seen when pix2pix segmented the three classes. The precision
results were less dispersed, i.e., the interquartile range is smaller compared to the recall
results. On the other hand, we can also see that the median precision was higher than the
median obtained by the recall, which shows a first indication that pix2pix minimized false
positives concerning false negatives, which is probably associated with an underestimation
of the Sargassum pixels.

Figure 8B shows the results of the f0.5-score and f2-score metrics when pix2pix
segmented the three classes. In this case, the interquartile range of both metrics was more
similar. However, the results of the f05-score metric show a distribution with a slight
positive skewness, at the same time that 75% of the data of the f05-score metric had a value
higher than 75% of the data of the f2-score metric. This seems to be another indicator that
pix2pix underestimated the results by minimizing the number of FPs produced.

Figures 9A and 9B show the results of precision, recall, and Ff3-Score metrics for each
class segmented by pix2pix. As seen in Fig. 9A, the class with the lowest dispersion in the
results, as well as the highest value for the median, was the sand class. This suggests that
pix2pix most effectively minimized the total false positives for this class, which is an
indicator that the algorithm has a stable behavior when segmenting these pixels and is
probably due, among other things, to the high contrast between the sand pixels compared
to the pixels of the rest of the classes.

The next class with the best values was the “other” class, its interquartile range was
higher than “sand” class and lower than “Sargassum” class. The median value was close to
the value of the “sand” class. As observed in the histograms shown in the dataset section,
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one would expect that, given the number of pixels in this class was higher than the rest,
pix2pix would have more information during its training process, and this would be
reflected in a greater generalization capacity. However, since the pixels of the other class,
are composed of a wider diversity of elements (i.e., water, sky, palm trees), it provided a
higher variability in the values of the components that made up their color, causing the
algorithm to have additional stress when classifying this class.

Finally, Fig. 9A depicts the precision values for the Sargassum class, showing the highest
dispersion, given that the number of images with Sargassum is the one with the least
number of pixels, causing the algorithm to lack sufficient information during the training
stage. However, this is to be expected, given the nature of the phenomenon of Sargassum
upwelling on the beaches that have been analyzed during this study.

Figure 9B shows the results for the recall metric. This graph shows the behavior of
pix2pix for FNs. The class with the lowest dispersion of the metric is the “other” class,
which implies that pix2pix minimizes more effectively the FNs, having a positive impact at
the time of generalization. In the same figure, once again, we can see that the class with the
highest interquartile range was the Sargassum one. However, the median value is above for
the sand class. This suggests that pix2pix confounded the Sargassum pixels to a lesser
extent, i.e., given the precision and recall values for this class, the algorithm tended to
underestimate the amount of Sargassum detected which, as discussed above, is better than
if the algorithm overestimated these values. Overall, we see that pix2pix performs
acceptably when segmenting aerial imagery. Since there is no similar work in the state of
the art, we believe that the results shown so far can provide a baseline for comparing future
algorithms.

Once the algorithm was evaluated in its entirety (segmentation of all the classes), Ff-
Score metrics calculation were performed with f = 0.5 and § = 2, only for the results
yielded by the algorithm for the Sargassum class (Table 4). To do this the classes “sand”,
and “others” were unified to form a single class, which was also called “others”. As
expected, the median value decreased, and the interquartile range increased because the
number of pixels of the new class “others” is several orders of magnitude higher than the
total number of pixels of the Sargassum class. As demonstrated in Fig. 10, the values for the
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F0.5 and F2 metrics are similar. However, the median value for the case of the F0.5 metric
is slightly higher than the value for F2, which confirms that pix2pix has a slight tendency to
underestimate the presence of Sargassum pixels in the aerial images.

Figure 11 depicts two histograms showing the probability distribution of the F0.5-Score
metric when pix2pix was used to segment the aerial images contained in the test dataset.
Figure 11A shows the distribution of the F0.5 score for the case where pix2pix segmented
the three classes. The mean is 0.8636, using a 90% confidence interval. The performance of
the algorithm can vary between 0.8590 and 0.8684, which we consider to be a good result,
considering that there can be values higher than 0.8684, which is reliable since, as discussed
above, the algorithm tends to underestimate the amount of pixels detected as Sargassum.
On the other hand, Fig. 11B shows the histogram for the distribution of the F0.5 score
metric when pix2pix was used to segment the image into Sargassum and the “other”
classes. These findings suggest that the algorithm performance has apparently decreased
since the mean is now 0.6371, with a 90% confidence interval between 0.6249 and 0.6483.
However, the decrease in the average does not mean that the algorithm is performing
poorly, in this case, it is because of, the large number of pixels for the “sand” and “other”
classes skewing the results. We believe that these last measurements demonstrate two
things. First, the algorithm behavior is not random. Second, it sets a benchmark for the
assessment of future Sargassum segmentation algorithms using aerial photographs.

Based on the f0.5 — score values obtained by resampling the test dataset, considering all
classes (depicted in Fig. 11A), Fig. 12 shows five images with f0.5score values within and
outside the computed confidence intervals. The information in each column corresponds
to each image; the first row shows the source image, and the second row shows the image
segmented by the algorithm (Sargassum is colored in red). The third row shows the 3 x 3
confusion matrix corresponding to the image in each column, the values in the confusion
matrix represent the number of pixels per class in an image (other, sand and Sargassum),
the ground-truth data are represented on the x-axis, and the predicted ones on the y-axis.
Finally, at the bottom of the figure, we can see the f0.5 and f2-score values for each
segmented image.
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First, we will comment on some features that are common to several of the images, and
later we will comment on specific features of each image. In all the images in Fig. 12, the
values of the main diagonal (TP) are one or two orders of magnitude higher than their
corresponding FP and FN; which means that, for these images, the algorithm has classified
well the high amount of pixels. On the other hand, focusing on the Sargassum class, the
f0.5 values are higher than the f2 values, suggesting that the algorithm tends to
underestimate the Sargassum class in general. Figure 12A shows a value of f0.5 = 0.7969,
which is between the minimum value and quantile 1, and the 0.5 values in Figs. 12B-12E
are between quartile 1 and quartile 2.

It is important to remember that the “others” class is the most abundant in the dataset,
followed by the “sand” class and finally the “Sargassum” class. This imbalance in the
dataset implies that the generalization capacity of the algorithm is better for the “others”
class and lower for the “sand” and “Sargassum” classes, which in turn affects the quality of
the image segmentation.

In the segmented images corresponding to Figs. 12A and 12D, FNs are observed in dry
vegetation, which can be explained due to the similar spectral characteristics between dry
leaves and dry Sargassum. On the other hand, FNs are also observed in areas of dry
Sargassum that were mistaken for palm leaves, which is another manifestation of the
spectral similarity between dry vegetation and dry Sargassum. In the segmented images of
Figs. 12A-12D, FP is observed in small areas of sand surrounded by Sargassum that fail to
be identified as “sand,” perhaps due to the inability of the algorithm to distinguish very
small areas of one class within another. On the other hand, in the segmented images of
Figs. 12A and 12C, FPs are observed on the sand and along the upper left edge, where there
is no Sargassum, for this type of FPs, we have not identified a reason. However, they could
be addressed by ANN explainability studies, which are beyond the scope of this study.

Figure 12A presents a value of f0.5 = 0.7969, located to the left of the confidence
interval (f0.5 = 0.8590). In the confusion matrix, the highest values were observed in the
main diagonal (TP), meaning that most of the pixels were correctly segmented for all
classes. “Others” is the most dominant class, since it presents the highest number of TP
(26,198), followed by the “sand” class (14,783), and finally, the “Sargassum” class (10,283).
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Table 4 f scores for Sargassum.
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This is because the highest number of pixels in the “source” image corresponds to
vegetation, which belongs to the “others” class, followed by the “sand” class, and finally the
lowest number of pixels is from the “Sargassum” class.

Figure 12B has a value of f0.5 = 0.8549, which is close to the confidence interval value
on the left side (f0.5 = 0.8590). In the confusion matrix, the “Sargassum” class is the one
with the highest number of TP, which is desirable since the Sargassum class is the most
abundant in the source image. In the segmented image, we can see that the algorithm is
properly segmenting Sargassum in the three different stages of the macroalgae; the fresh
one that presents a golden color, the one in decomposition that exhibits a brown color, and
the dried one that shows a dark gray color.

Figure 12C has a value of 0.5 = 0.8608, which is very close to the mean value
calculated by resampling (f0.5 = 0.8636). In the main diagonal, the highest values of the
confusion matrix are observed, which means that a high amount of pixels were correctly
segmented. In the segmented image, the shades of the small dunes were confused with
Sargassum, possibly due to a confusion between the dark tones of the shadows and the dry
Sargassum, thus generating PF on the sand.

Figure 12D has a value of 0.5 = 0.8733, which is to the right of the confidence interval
(f0.5 = 0.8684) on the right side. In this case, the highest values of the matrix on the main
diagonal can be observed again, which means a high amount of correctly segmented pixels.

Figure 12E has a value of 0.5 = 0.9222 and lies to the right of the confidence limit on
the right side. In this case, the scene shows Sargassum floating in the sea, which is why the
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“sand” class is not present in this image. Thus in the confusion matrix, zeros are observed
in the boxes corresponding to the “sand” class. It is noteworthy that the algorithm manages
to distinguish a large part of the seabed vegetation and does not confuse it with Sargassum;
however, in the segmented image, FP patches are observed in the lower right, which could
be due to the algorithm confusing the image resulting from the combination of the seabed
and the reflections on the water surface with Sargassum. Finally, FN are observed on the
shores of the Sargassum areas, which can be explained as another manifestation of the
spectral similarity between the Sargassum and the sum of the effects caused by the seabed
and the surface.

It is relevant to consider that the images of the sea surface are dynamic, and the scene of
the following moments in time may be different from the previous ones. This occurs
because the sea surface changes constantly, mainly due to sea currents and wind, which is
one of the reasons why we do not use the results of this study for the design of Sargassum
coverage maps in nearshore waters.

Based on the f0.5-score values obtained by resampling the test dataset (depicted in
Fig. 11B), Fig. 13 shows five images with f0.5 score values within and outside the computed
confidence intervals. The information in each column corresponds to each photograph
and has the same structure commented for Fig. 12. A segmentation analysis of Sargassum
was performed. For this purpose, the classes “Others” and “sand” were unified into one,
denominated “Others”. Therefore, the matrix is 2 x 2 because there are only two classes
(Others and Sargassum). Therefore, it should be noted that the values of FP, EN, and TP in
the 2 x 2 matrices in Fig. 13 represent the sum of the values of the “other” and “sand”
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classes. We will first comment on some characteristics common among the images and
then on the specific features for each image. The 0.5 values in Figs. 13A-13D lie between
quartile 1, and quartile 2, and the f0.5 value in Fig. 13E lies between quartile 2, and
quartile 3.

In Figs. 13A-13D, the “Others” class is the most abundant, which can also be seen in the
confusion matrix of these images, where the highest values are in the TN (lower right
quadrant). This means that most of the pixels of the “others” class were well segmented. In
Fig. 13E, the “Sargassum” class is the most abundant, in this case, the highest values are
found in the quadrant corresponding to the TPs (upper left quadrant).

Most of the PFs and FNs present in the images in Fig. 13 may have their origin in the
algorithm’s limitation in discriminating elements that share some spectral similarity. On
land, the PF and FN occur mainly between dry vegetation and dry Sargassum. On the other
hand, in the shallow aquatic areas near the beach, in addition to the constant change in the
brightness of the scene due to the waves, the various elements that can be seen on the
seabed are another factor that contributes to the appearance of PFs and FNs, as they
contribute to the changes in the water surface. Additionally, there are scenes in which the
color of the sea changes to brown tones because of the decomposition of the Sargassum,
this change in the color of the water diminishes the contrast between the sea and the
Sargassum, making segmentation difficult.

Figure 13A presents a value of f0.5 = 0.4125, located to the left of the confidence
interval (f0.5 = 0.6249). In the source image, the water is the most abundant element in
the scene; the segmented image shows that the algorithm fails to identify all the Sargassum
located in the upper left part of the image. Because it underestimates the Sargassum class,
the confusion matrix has low values for the TP (upper left quadrant). The tendency of the
algorithm to underestimate the Sargassum class can also be deduced from the fact that the
value of the f0.5-score is higher than the f2-score.

Figure 13B presents a value of f0.5 = 0.5675, located to the left of the lefthand
confidence interval (f0.5 = 0.6249). The source image shows that the “Other” class is the
most abundant. The segmented image shows water pixels segmented as “Sargassum” (FP)
and “Sargassum” pixels not segmented as such (FN). In the confusion matrix, we can
observe that the amount of FP is less than the amount of FN (FP < FN), which suggests
that, in this image, the algorithm overestimates the presence of Sargassum, comparing the
value of the f metrics (f0.5 < f2) is another path to conclude the algorithm overestimation
in this image.

Figure 13C shows a value of f0.5 = 0.6433, located within the confidence intervals and
to the right of the mean (f0.5 = 0.6371). In the original image, the sea looks brown due to
the concentration of leachates in the water. This condition tends to reduce the contrast
between the Sargassum and the sea; thus, reducing the segmentation capacity of the
algorithm. In this case, the Sargassum has been underestimated (f0.5 > f2).

Figure 13D presents a value of f0.5 = 0.7055, located to the right of the righthand
confidence interval (f0.5 = 0.6483). In the source image, it is seen that the “others” class is
dominant. In the segmented image, some elements of a boat were segmented as Sargassum
(FP), and in the upper left part of the image, we can see that Sargassum that is not
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Figure 13 Sargassum f0.5-score metric consider only Sargassum class.
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segmented as such (FN). Comparing the metrics, we conclude that Sargassum is overall
underestimated in this image (0.5 > £2).

Figure 13E shows a value of f0.5 = 0.7939 and lies to the right of the right-hand
confidence interval (f0.5 = 0.6483). In the confusion matrix, the highest values are located
in the main diagonal, which means that a large number of pixels have been correctly
segmented. However, since f0.5 < f2, we concluded that there is an overestimation of
Sargassum in this image. From the analysis of Figs. 12 and 13, we can conclude that,
generally, the methodology proposed in this study shows its best results in the
segmentation of the Sargassum on beaches.

Sargassum mapping

Sargassum monitoring on the beach has a relatively recent history. The study of Arellano-
Verdejo & Lazcano-Hernandez (2020) states that crowdsourcing is helpful for building a
geotagged pictures dataset, to identify the presence or absence of Sargassum along the
beach. Later, the study conducted by Arellano-Verdejo ¢ Lazcano-Herndndez (2021)
implements the ideas proposed by the crowdsourcing study previously mentioned, and
using several beach-level geotagged photographs that were collected, a presence/absence
beach Sargassum map (Fig. 14A) was built. Afterward, the study conducted by Arellano-
Verdejo, Santos-Romero ¢ Lazcano-Hernandez (2022) goes forward and builds a dataset
composed of one thousand segmented-geotagged Sargassum beach-level pictures to retrain
a pix2pix algorithm. The percentage of Sargassum coverage was calculated from every
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Figure 14 Sargassum beach map evolution, study area located in Mahahual, Quintana Roo, México. Maps corresponding to April 21, 2021. (A)
Presence/absence Sargassum map built from images of the beach provided through crowdsourcing, (B) Sargassum coverage map, obtained through
calculating the percentage of Sargassum coverage using geotagged photographs. (C) Sargassum area map obtained using an aerial orthophoto.
(Source credit to Holger Weissenberger). Full-size K&l DOT: 10.7717/peerj.18192/fig-14

segmented-geotagged image. Based on this information and through a tessellation of
polygons of 30 x 30 square meters, it was possible to compute the average percentage of
Sargassum coverage for each polygon, and finally design a map with percentages of
Sargassum coverage for the study area (Fig. 14B).

The maps above used different elements to represent the presence of Sargassum on the
beach. The map in Fig. 14A used points to represent the locations where photographs with
information on the presence/absence of Sargassum were taken. The map (Fig. 14B) used
polygons to depict through a color ramp, the percentage of coverage for each area,
calculated by averaging the percentage of Sargassum in each photograph within each
square that conforms the tessellates, both maps show information that can be useful but do
not allow us to identify the areas where Sargassum is on the beach, which is the initial
information needed to make volume estimations. It is in this direction that the present
study makes one of its main contributions, proposing a quantitative and scalable
methodology for calculating the area of Sargassum coverage on the beach using aerial
photographs. Figure 14C shows the Sargassum area map resulting from using this
methodology. In this case, the polygon selected to visualize the macroalgae has the shape
corresponding to that delineated by the Sargassum and is highlighted by a color ramp in a
hot spot stile.

Figure 15 depicts an overview of the study area and some approaches to observing
details of the proposed map. Figure 15A shows an orthophoto corresponding to the study
area taken between 10:00 and 14:00 h on April 21, 2021. To build the orthophoto, the Open
Drone Map (ODM) software (https://www.opendronemap.org/webodm/) was used to
process 422 photographs taken with a “DJI Air 2” drone. The main parameters used for the
mission flies were the following: flight altitude of 56.2 m, vertical displacement speed of 16
km/h, front overlap of 80%, side overlap of 70%, and picture shot rate of 2 s; from these
parameters, the obtained Ground Sample Distance (GSD) was 2 cm per pixel.
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Figure 15 Mahahual, Quintana Roo. (A) Sargassum coverage-area map and orthophoto of the study area, corresponding to April 21, 2021.,
Approach of (B) B zone, Sargassum area: 123 m?, (C) C zone, Sargassum area: 92 m?, (D) D zone, Sargassum area: 144 m?, (E) E zone, Sargassum
area: 82m?. (Source credit to Holger Weissenberger). Full-size K&l DOT: 10.7717/peerj.18192/fig-15

The coastline in the town of Mahahual has shallow waters and is bordered by a
discontinuous reef to the east, approximately 120-400 m offshore. There are also
mangroves, rocky areas, and the lagoon bottom, which is covered with seagrass dominated
by T. testudinum (Camacho-Cruz et al., 2022). All of these add to the challenge of
identifying Sargassum in this environment. Figures 15B to 15E show approaches of the
areas within boxes B to E, depicted in Fig. 15A. Figure 15B shows a diagonal zone with the
presence of Sargassum that contrasts on the left with sand and on the right with a zone of
shallow transparent water. In this case, the Sargassum coverage area was calculated at
123 m?. Figure 15C shows Sargassum in the upper zone, which contrasts with shallow
transparent water, and what looks like seagrass in the lower part of the image. In this case,
the Sargassum coverage area was calculated at 92 m?. Figure 15D shows a diagonal zone
with the presence of Sargassum on the left side of the image and another area with a
smaller quantity in the upper-right zone rocks are also observed in the middle of both
Sargassum zones and the lower part of the image. In this case, the Sargassum coverage area
was calculated at 144 m?. Finally, Fig. 15E shows a diagonal zone with the presence of
Sargassum on the left side of the image, which contrasts with shallow transparent water,
and what looks like seagrass on the right side of the image. In this case, the Sargassum
coverage area was calculated at 82 m?.

Downtown Puerto Morelos has a wave-dominated beach with turquoise water and
white sandy beaches (Escudero et al., 2021). Therefore, the diversity of elements near the
beach is lower than in Mahahual, so the segmentation of Sargassum on the beach presents
fewer challenges, when compared to Mahahual’s beaches. Figure 16 depicts an overview of
the study area and some approaches to observing details of the proposed map. Figure 16A
shows an orthophoto from Puerto Morelos seaside on July 13, 2020 (SAMMO, 2020).
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Figure 16 Puerto Morelos, Quintana Roo. (A) Sargassum coverage-area map and orthophoto of the study area, corresponding to July 13, 2020,
Approach of (B) B zone, Sargassum area: 27 m?, (C) C zone, Sargassum area: 169 m?, (D) D zone, Sargassum area: 95 m?, (E) E zone, Sargassum area:
78 m?. (Source credit to Holger Weissenberger). Full-size 4] DOT: 10.7717/peerj.18192/fig-16

Figure 16B shows Sargassum along the beach with high contrast to the sand. The
Sargassum coverage area calculated in this image was 27 m?. Figures 16C~16E show
Sargassum along the beach with high contrast to the sand on the left and with a zone of
shallow transparent water mixed with Sargassum leachate. In the case of Fig. 16C, the
Sargassum coverage area was calculated at 169 m?, in Fig. 16D at 95 m?; and in Fig. 16E at
78 m?.

CONCLUSIONS

The present study contributes to the state-of-the-art by producing high-resolution maps of
Sargassum coverage, using aerial photographs and the pix2pix algorithm by image
semantic segmentation. These maps offer the possibility of measuring in square meters the
amount of Sargassum that covers the beach, which makes them a benchmark for the state
of the art of Sargassum monitoring on the beach. They are also useful for informed
decision-making regarding the management, use, and final disposal of Sargassum.

The first contribution of this study is the construction of a dataset of aerial images
segmented into three classes (Sargassum, sand, and others) for the training of semantic
segmentation algorithms. The photos were collected at different times and correspond to
beaches in the cities of Mahahual and Puerto Morelos, located in the state of Quintana
Roo, Mexico. The resulting dataset is unique in its type, consisting of 15,268 segmented
aerial images. Compared to previous studies for the same region is the first of its kind.

To characterize the training dataset, we calculated the entropy for each image and the
total number of pixels per class across all imagery. The values calculated for the entropy
indicate sufficient photos in the dataset with valuable information for algorithm training.
Regarding pixel count, the results suggest an unbalanced dataset in terms of pixels within
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the class of interest, which poses a challenge for the algorithm; ideally, there would be an
equal number of pixels for all classes.

The analysis of the results utilized the f0.5 and f2 metrics. From a Sargassum class
perspective, the findings depict a general balance between the false positives and false
negatives, with a slight inclination towards the latter, which means that the algorithm
tends to underestimate the Sargassum, which is not harmful to the purposes of our study.
To better understand the algorithm’s performance, we applied the bootstrapping
resampling technique to the 0.5 metric results in two cases: considering all classes and
considering only the Sargassum class. This allowed us to establish confidence intervals for
the algorithm’s generalization capacity in each case. Observations indicated that the
algorithm performs well in segmenting Sargassum images on sand. Although the algorithm
demonstrates adequate performance in certain instances when segmenting Sargassum over
water, as measured by the 0.5 and f2 metrics, we caution against employing it for
segmenting images of floating Sargassum.

The second contribution of this study lies in the design of quantitative maps of
Sargassum cover along the beach. Using of geographic information systems, the segmented
orthophoto was vectorized, which allows, for calculating the area in square meters that
Sargassum covers on the beach. The differentiating element in these maps is the perimeter
of the polygons used to depict the Sargassum; they have the shape of the macroalgae
accumulated along the beach, allowing them to validate satellite remote sensing
measurements.

Furthermore, given the segmentation algorithm’s ability to isolate sand on the beach, it
is feasible to calculate the portion of the beach covered by Sargassum, and the percentage of
the beach that is clear. This can have a favorable impact on designing effective beach
cleaning logistics. Due to its achieved generalization capacity, estimated through the
bootstrapping technique described above, the findings demonstrate the potential of this
approach to segment aerial orthophotos of various areas of interest, without requiring
consideration in the training dataset.

Findings from this study suggest that the performance of the pix2pix algorithm depends
on the quality of the training dataset. Thus, to improve the performance of the algorithm,
this would require retraining with a balanced dataset, in terms of the three classes used in
the study (Sargassum, sand, and others), and including a higher amount of Sargassum
images in various contexts like water, soil, and leachate, which is a challenge for Earth
observation studies, such as this one.
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